Teacher notes

Topic C

Simple harmonic oscillations

The spring has spring constant $k=162 \mathrm{~N} \mathrm{~m}^{-1}$. The string is cut. Write down the equation giving the displacement of the 0.50 kg mass as a function of time.

Before the string is cut the tension in the spring is 8.0 N and so the extension is $x=\frac{8.0}{162}=4.94 \mathrm{~cm}$. The new equilibrium position has the spring extended by $x=\frac{5.0}{162}=3.09 \mathrm{~cm}$. The displacement at $t=0$ when the string is cut is then $x=4.94-3.09=1.85 \mathrm{~cm}$. This will be the amplitude of oscillations x_{0}.
$x=x_{0} \sin (\omega t+\phi)$
$v=\omega x_{0} \cos (\omega t+\phi)$
$a=-\omega^{2} x_{0} \sin (\omega t+\phi)$
At $t=0, x=-1.85 \mathrm{~cm}$: this means that $-1.85=1.85 \sin (0+\phi)$. I.e. $\sin \phi=-1 \Rightarrow \phi=\frac{3 \pi}{2}$. The angular frequency is given by $\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{162}{0.50}}=18 \mathrm{~s}^{-1}$. So we expect $x=1.85 \sin \left(18 t+\frac{3 \pi}{2}\right)$. We can check f this makes sense. The velocity at $t=0$ is $v=\omega x_{0} \cos \left(0+\frac{3 \pi}{2}\right)=0$ as it should be. The acceleration at $t=0$ is $a=-\omega^{2} x_{0} \sin \left(0+\frac{3 \pi}{2}\right)=+\omega^{2} x_{0}=18^{2} \times 1.85 \times 10^{-2}=6.0 \mathrm{~m} \mathrm{~s}^{-2}$. This is as it should be because right after

IB Physics: K.A. Tsokos

after the string is cut the tension in the spring is still 8.0 N and so the net force on the mass is $8.0-5.0=$ 3.0 N . The initial acceleration is then $a=\frac{3.0}{0.50}=6.0 \mathrm{~m} \mathrm{~s}^{-2}$.

Hence the answer to the problem is $x=1.85 \sin \left(18 t+\frac{3 \pi}{2}\right)$.

